Readings π
General notes π
Introduction π
Foundations π
Week 36 π
Papers β Capabilities π
- Mitchell, M., 2023. AIβs challenge of understanding the world. Science, 382(6671), eadm8175.
- Mitchell, M., 2024. The metaphors of artificial intelligence. Science, 386(6723), eadt6140.
- Mitchell, M., 2025. Artificial intelligence learns to reason. Science, 387(6740), eadw5211.
Papers with Case Studies (revisited in Session 8 and 9) π
- Brynjolfsson, E., Li, D. and Raymond, L., 2025. Generative AI at Work. Quarterly Journal of Economics, 140(2), pp.889β942.
- Agarwal, N., Moehring, A., Rajpurkar, P. and Salz, T., 2023. Combining human expertise with artificial intelligence: Experimental evidence from radiology. NBER Working Paper No. 31422.
- Yu, F. et al., 2024. Heterogeneity and predictors of the effects of AI assistance on radiologists. Nature Medicine, 30(3), pp.837-849.
- Grimon, M-P. and Mills, C., 2025. Better Together? A field experiment on human-algorithm interaction in child protection. arXiv preprint arXiv:2502.08501.
- Argyle, L.P., Busby, E.C., Gubler, J.R., et al., 2025. Testing theories of political persuasion using AI. Proceedings of the National Academy of Sciences, 122(18), e2412815122.
- Dubova, M., Chandramouli, S., Gigerenzer, G., GrΓΌnwald, P., Holmes, W., Lombrozo, T., Marelli, M., Musslick, S., Nicenboim, B., Ross, L.N., Shiffrin, R., White, M., Wagenmakers, E-J., BΓΌrkner, P-C. and Sloman, S.J., 2025. Is Ockhamβs razor losing its edge? New perspectives on the principle of model parsimony. Proceedings of the National Academy of Sciences, 122(5), e2401230121.
Basic and linear machine learning π
- ESL: Chapters 1β4
Inspirational References π
ML to uncover new data sources for social science
- Text data
- Images
- Blumenstock, J., Cadamuro, G. and On, R., 2015. Predicting poverty and wealth from mobile phone metadata. Science, 350(6264), pp.1073β1076.
- Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E.L. and Fei-Fei, L., 2017. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proceedings of the National Academy of Sciences, 114(50), pp.13108β13113.
- Voth, H-J. anf Yanagizawa-Drott, D., 2024. Image(s). Unpublished manuscript
Week 37 π
Week 38 π
The lectures for week 38-41 are mainly based on Speech and Language Processing, 2025 by Jurafsky & Martin.
Week 39 π
Week 40 π
TBD
Week 41 π
TBD
Policy π
Week 44 and Week 45 π
Case Studies (same as session 1)
Fairness
- Liang, A., Lu, J., Mu, X. and Okumura, K., 2021. Algorithm Design: A Fairness-Accuracy Frontier. arXiv preprint arXiv:2112.09975.
- Auerbach, E., et al., 2024. Testing the Fairness-Accuracy Improvability of Algorithms. arXiv preprint arXiv:2405.04816.
- Kasy, M. and Abebe, R., 2021. Fairness, Equality, and Power in Algorithmic Decision-Making. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT), pp.576β586.
- Arnold, D., Dobbie, W. and Hull, P., 2025. Building Nondiscriminatory Algorithms in Selected Data. American Economic Review: Insights, 7(2), pp.231β249.
Delegation and Learning
- Agarwal, N., Moehring, A. and Wolitzky, A., 2025. Designing Human-AI Collaboration: A Sufficient-Statistic Approach (No. w33949). National Bureau of Economic Research.
- Noti, G., Donahue, K., Kleinberg, J. and Oren, S., 2025. Ai-assisted decision making with human learning. arXiv preprint arXiv:2502.13062.
Econ ML π
Week 46 π
Basic econometrics
- Angrist and Pischke (2008): chapters 2 and 3
Causal trees and forests
- Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27), 7353-7360.
- Wager, S. and Athey, S., 2018. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), pp.1228-1242.
- Athey, S., Tibshirani, J. and Wager, S., 2019. Generalized random forests. The Annals of Statistics, 47(2), pp.1148-1178.
- Athey, S. and Wager, S., 2019. Estimating treatment effects with causal forests: An application. Observational studies, 5(2), pp.37-51.
Week 47 π
- An Introduction to Double/Debiased Machine Learning
- Causal ML Book (available here)
Week 48 π
- TBD
Outro π
Books π
-
Angrist, J. D., and Pischke, J. S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton university press.